Welcome > Support > Âü°íÀÚ·á  
 
 
E
 
±Ûº¸±â
¼º¸í ÆijªÁø     (Date : 2010-10-19 10:10:21)
Á¦¸ñ [³í¹®] [ÆijªÁø ³í¹® ¹ßÇ¥] PNA-Based Antisense Oligonucleotides for MicroRNAs Inhibition in the Absence of a Transfection Reagent.
³»¿ë

Oligonucleotides. 2010 Oct 14. [Epub ahead of print]

PNA-Based Antisense Oligonucleotides for MicroRNAs Inhibition in the Absence of a Transfection Reagent.

Oh SY, Ju Y, Kim S, Park H.

Panagene, Inc. , Daejeon, Korea.

Abstract

MicroRNAs (miRNAs) are noncoding RNAs approximately 22 nucleotides in length that play a major role in the regulation of important biological processes, including cellular development, differentiation, and apoptosis. Antisense oligonucleotides against miRNAs are useful tools for studying the biological mechanisms and therapeutic targets of miRNAs. Various antisense oligonucleotides chemistries, including peptide nucleic acids (PNAs), have been developed to enhance nuclease-resistance and affinity and specificity for miRNA targets. PNAs have a greater specificity and affinity for DNA and RNA than do natural nucleic acids, and they are resistant to nucleases—an essential property of an miRNA inhibitor that will be exposed to cellular nucleases. However, the main limiting factor in the use of PNAs is their reduced penetration into cells. Recently, several cell-penetrating peptides (CPPs) have been investigated as a means to overcome the limited penetration of PNAs. Here, we evaluated the ability of 11 CPPs to transport PNAs inside cells in the absence of transfection reagents and then investigated the ability of these CPPs to inhibit miRNAs. Of the 11 CPPs tested, Tat-modified-conjugated PNA showed the most effective penetration into cells in the absence of transfection reagents and most effectively inhibited miRNAs. Our data demonstrate that Tat-modified-conjugated CPP is the most suitable for supporting PNA-mediated miRNA inhibition.

PMID: 20946011 [PubMed - as supplied by publisher]

Link to - CLICK


 

 ¹øÈ£   Á¦¸ñ ÀÛ¼ºÀÚ ÆÄÀÏ Á¶È¸
   49           [³í¹®] [2016]Comparison of EGFR .. ÆijªÁø 30426
   48           [³í¹®] [2015]IDH Mutation Analys.. ÆijªÁø 65535
   47           [³í¹®] [2015]Low frequency of KR.. ÆijªÁø 29333
   46           [³í¹®] [2015]Simultaneous genoty.. ÆijªÁø 6191
   45           [³í¹®] [2014]Simultaneous diagno.. ÆijªÁø 21097
   44           [³í¹®] [2014]KRAS Mutation Detec.. ÆijªÁø 8538
   43           [³í¹®] [2013]Detection of EGFR m.. ÆijªÁø 1298
   42           [³í¹®] [2013]Detection and compa.. ÆijªÁø 5939
   41           [³í¹®] [2013]Detection of BRAF V.. ÆijªÁø 6221
   40           [³í¹®] [2013]Comparison of Direc.. ÆijªÁø 25408
   39           [³í¹®] [Microarray]Peptide nucle.. ÆijªÁø 14446
   38           [³í¹®] [Clamp]Rapid and Sensitiv.. ÆijªÁø 22365
   37           [³í¹®] [ÆijªÁø Á¦Ç°»ç¿ë ³í¹®] EGFR µ¹¿¬º¯.. ÆijªÁø 3510
   36           [³í¹®] [ÆijªÁø Á¦Ç°»ç¿ë ³í¹®] Development .. ÆijªÁø 14282
   35           [³í¹®] [ÆijªÁø Á¦Ç°»ç¿ë ³í¹®] JHDM3A modul.. ÆijªÁø 1290
   34           [³í¹®] [PNA Chip vs DNA Chip ÀÓ»ó.. ÆijªÁø 4151
   33           [³í¹®] [ÆijªÁø ³í¹®¹ßÇ¥] PNA-mediated Re.. ÆijªÁø 8946
   32           [³í¹®] [ÆijªÁø Á¦Ç°»ç¿ë ³í¹®] ºñ¼Ò¼¼Æ÷Æó¾Ï¿¡.. ÆijªÁø 14601
¢º           [³í¹®] [ÆijªÁø ³í¹® ¹ßÇ¥] PNA-Based Anti.. ÆijªÁø 1294
   30           [³í¹®] [ÆijªÁø ³í¹®¹ßÇ¥]Peptide nucleic .. ÆijªÁø 4015
 

< 1 2 3 >