Welcome > Support > Âü°íÀÚ·á  
 
 
E
 
±Ûº¸±â
¼º¸í ÆÄ³ªÁø     (Date : 2010-10-19 10:10:21)
Á¦¸ñ [³í¹®] [ÆÄ³ªÁø ³í¹® ¹ßÇ¥] PNA-Based Antisense Oligonucleotides for MicroRNAs Inhibition in the Absence of a Transfection Reagent.
³»¿ë

Oligonucleotides. 2010 Oct 14. [Epub ahead of print]

PNA-Based Antisense Oligonucleotides for MicroRNAs Inhibition in the Absence of a Transfection Reagent.

Oh SY, Ju Y, Kim S, Park H.

Panagene, Inc. , Daejeon, Korea.

Abstract

MicroRNAs (miRNAs) are noncoding RNAs approximately 22 nucleotides in length that play a major role in the regulation of important biological processes, including cellular development, differentiation, and apoptosis. Antisense oligonucleotides against miRNAs are useful tools for studying the biological mechanisms and therapeutic targets of miRNAs. Various antisense oligonucleotides chemistries, including peptide nucleic acids (PNAs), have been developed to enhance nuclease-resistance and affinity and specificity for miRNA targets. PNAs have a greater specificity and affinity for DNA and RNA than do natural nucleic acids, and they are resistant to nucleases—an essential property of an miRNA inhibitor that will be exposed to cellular nucleases. However, the main limiting factor in the use of PNAs is their reduced penetration into cells. Recently, several cell-penetrating peptides (CPPs) have been investigated as a means to overcome the limited penetration of PNAs. Here, we evaluated the ability of 11 CPPs to transport PNAs inside cells in the absence of transfection reagents and then investigated the ability of these CPPs to inhibit miRNAs. Of the 11 CPPs tested, Tat-modified-conjugated PNA showed the most effective penetration into cells in the absence of transfection reagents and most effectively inhibited miRNAs. Our data demonstrate that Tat-modified-conjugated CPP is the most suitable for supporting PNA-mediated miRNA inhibition.

PMID: 20946011 [PubMed - as supplied by publisher]

Link to - CLICK


 

 ¹øÈ£   Á¦¸ñ ÀÛ¼ºÀÚ ÆÄÀÏ Á¶È¸
   49           [³í¹®] [2016]Comparison of EGFR .. ÆÄ³ªÁø 30627
   48           [³í¹®] [2015]IDH Mutation Analys.. ÆÄ³ªÁø 65535
   47           [³í¹®] [2015]Low frequency of KR.. ÆÄ³ªÁø 41433
   46           [³í¹®] [2015]Simultaneous genoty.. ÆÄ³ªÁø 6448
   45           [³í¹®] [2014]Simultaneous diagno.. ÆÄ³ªÁø 25262
   44           [³í¹®] [2014]KRAS Mutation Detec.. ÆÄ³ªÁø 11212
   43           [³í¹®] [2013]Detection of EGFR m.. ÆÄ³ªÁø 1448
   42           [³í¹®] [2013]Detection and compa.. ÆÄ³ªÁø 6081
   41           [³í¹®] [2013]Detection of BRAF V.. ÆÄ³ªÁø 6432
   40           [³í¹®] [2013]Comparison of Direc.. ÆÄ³ªÁø 29521
   39           [³í¹®] [Microarray]Peptide nucle.. ÆÄ³ªÁø 17185
   38           [³í¹®] [Clamp]Rapid and Sensitiv.. ÆÄ³ªÁø 35177
   37           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] EGFR µ¹¿¬º¯.. ÆÄ³ªÁø 3705
   36           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] Development .. ÆÄ³ªÁø 17372
   35           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] JHDM3A modul.. ÆÄ³ªÁø 1492
   34           [³í¹®] [PNA Chip vs DNA Chip ÀÓ»ó.. ÆÄ³ªÁø 8980
   33           [³í¹®] [ÆÄ³ªÁø ³í¹®¹ßÇ¥] PNA-mediated Re.. ÆÄ³ªÁø 14818
   32           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] ºñ¼Ò¼¼Æ÷Æó¾Ï¿¡.. ÆÄ³ªÁø 18471
¢º           [³í¹®] [ÆÄ³ªÁø ³í¹® ¹ßÇ¥] PNA-Based Anti.. ÆÄ³ªÁø 3990
   30           [³í¹®] [ÆÄ³ªÁø ³í¹®¹ßÇ¥]Peptide nucleic .. ÆÄ³ªÁø 4240
 

< 1 2 3 >