Welcome > Support > Âü°íÀÚ·á  
 
 
E
 
±Ûº¸±â
¼º¸í ÆÄ³ªÁø     (Date : 2016-07-13 10:22:54)
Á¦¸ñ [³í¹®] [2015]IDH Mutation Analysis in Ewing Sarcoma Family Tumors.
³»¿ë


J Pathol Transl Med. 2015 May;49(3):257-61. doi: 10.4132/jptm.2015.04.14. Epub 2015 May 15.

IDH Mutation Analysis in Ewing Sarcoma Family Tumors.

Na KY1Noh BJ2Sung JY3Kim YW3Santini Araujo E4Park YK3.

Author information

Abstract

BACKGROUND:

Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG) with production of reduced nicotinamide adenine dinucleotide (NADH). Dysfunctional IDH leads to reduced production of α-KG and NADH and increased production of 2-hydroxyglutarate, an oncometabolite. This results in increased oxidative damage and stabilization of hypoxia-inducible factor α, causing cells to be prone to tumorigenesis.

METHODS:

This study investigated IDH mutations in 61 Ewing sarcoma family tumors (ESFTs), using a pentose nucleic acid clamping method and direct sequencing.

RESULTS:

We identified four cases of ESFTs harboring IDH mutations. The number of IDH1 and IDH2 mutations was equal and the subtype of IDH mutations was variable. Clinicopathologic analysis according to IDH mutation status did not reveal significant results.

CONCLUSIONS:

This study is the first to report IDH mutations in ESFTs. The results indicate that ESFTs can harbor IDH mutations in previously known hot-spot regions, although their incidence is rare. Further validation with a larger case-based study would establish more reliable and significant data on prevalence rate and the biological significance of IDH mutations in ESFTs.

KEYWORDS:

Isocitrate dehydrogenase; PNA clamping; Sarcoma, Ewing


 

 ¹øÈ£   Á¦¸ñ ÀÛ¼ºÀÚ ÆÄÀÏ Á¶È¸
   49           [³í¹®] [2016]Comparison of EGFR .. ÆÄ³ªÁø 32685
¢º           [³í¹®] [2015]IDH Mutation Analys.. ÆÄ³ªÁø 65535
   47           [³í¹®] [2015]Low frequency of KR.. ÆÄ³ªÁø 44022
   46           [³í¹®] [2015]Simultaneous genoty.. ÆÄ³ªÁø 6607
   45           [³í¹®] [2014]Simultaneous diagno.. ÆÄ³ªÁø 25731
   44           [³í¹®] [2014]KRAS Mutation Detec.. ÆÄ³ªÁø 11266
   43           [³í¹®] [2013]Detection of EGFR m.. ÆÄ³ªÁø 1505
   42           [³í¹®] [2013]Detection and compa.. ÆÄ³ªÁø 6165
   41           [³í¹®] [2013]Detection of BRAF V.. ÆÄ³ªÁø 6529
   40           [³í¹®] [2013]Comparison of Direc.. ÆÄ³ªÁø 34984
   39           [³í¹®] [Microarray]Peptide nucle.. ÆÄ³ªÁø 19981
   38           [³í¹®] [Clamp]Rapid and Sensitiv.. ÆÄ³ªÁø 49223
   37           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] EGFR µ¹¿¬º¯.. ÆÄ³ªÁø 3796
   36           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] Development .. ÆÄ³ªÁø 30507
   35           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] JHDM3A modul.. ÆÄ³ªÁø 1577
   34           [³í¹®] [PNA Chip vs DNA Chip ÀÓ»ó.. ÆÄ³ªÁø 26211
   33           [³í¹®] [ÆÄ³ªÁø ³í¹®¹ßÇ¥] PNA-mediated Re.. ÆÄ³ªÁø 17561
   32           [³í¹®] [ÆÄ³ªÁø Á¦Ç°»ç¿ë ³í¹®] ºñ¼Ò¼¼Æ÷Æó¾Ï¿¡.. ÆÄ³ªÁø 33391
   31           [³í¹®] [ÆÄ³ªÁø ³í¹® ¹ßÇ¥] PNA-Based Anti.. ÆÄ³ªÁø 4100
   30           [³í¹®] [ÆÄ³ªÁø ³í¹®¹ßÇ¥]Peptide nucleic .. ÆÄ³ªÁø 4334
 

< 1 2 3 >